INTERNATIONAL / NATIONAL & KARNATAKA : BUSINESS EVENT: COFFEE WORLD IN INDIA : Bengaluru to Host ‘World Coffee Conference’ for first time, September 25

The global coffee event will significantly boost India’s image in the international coffee markets, domestic markets and bring in growth in exports volumes and values, says Coffee Board CEO.

Bengaluru is all set to host the 5th World Coffee Conference (WCC), a property of the London-based International Coffee Organisation (ICO), set up under the auspices of the United Nations to highlight the economic importance of coffee grown around the globe.

It is for the first time that India and Asia are hosting this prestigious global coffee event and Coffee Board is currently in the last leg of preparation to host the four-day coffee exposition that is commencing in the City on September 25.

Vibrant eco-system

K.G. Jagadeesha, Coffee Board CEO and Secretary, told The Hindu that India receiving the ICO nod to host this mega coffee event itself was the biggest recognition the country received as a major producer of finest coffees with a supportive and vibrant ecosystem. “To make it unique, vibrant and memorable, the board has the active support of 16 coffee committees with each outfit coming with 25 different stakeholders,’‘ he said.

However, he observed, even though the country produced the best quality coffees, Indian coffees are yet to be perceived well and this edition of WCC was going to correct this mismatch.

Perception battle

“Our robusta, with its undisputed quality, is the best and finest in the world. Our arabica, although considered as second best in the world, fetches a premium on par with Columbian arabia which is rated the finest in the world. What eventually matters is the perception. Columbia has done huge consumer campaigns,” he further said. Our coffee exports are currently over $1 billion. As an immediate incremental effect of the WCC, the Coffee Board is expecting an increase in exports volume and value growth of 10 to 15% for our coffees in the international markets, he anticipated. This will eventually help India build a stand-alone coffee brand in global markets, Dr. Jagadeesha added.

The WCC exposition is expected to boost India’s domestic coffee market as well in terms of receiving more focus on technology, investments, entrepreneurship, employment generation and creation of coffee varieties to offer customers a wide range of choice.

Expected to be big draw

Some 2,400 people, including coffee growers, roasters, curers, exporters, traders, cafe chain owners, retailers, have already registered to attend WCC. This will comprise over 300 foreign delegates from 60 countries. Some 40 global CEOs and 50 Indian CEOs are participating in the coffee conference. In addition to this, Coffee Board has already distributed 36,000 business delegates while another 15,000 similar passes will also be distributed/sold.

The government has permitted Coffee Board to use ₹12.5 crore plus GST from its internal budget to host WCC, while half of the money will be spent by the industry players.

source/content: thehindu.com (headline edited)

KARNATAKA: ENGINEERING: SPORTS: Unveiling of ‘KX 23’ – Go Kart: A Triumph of Dedication and Innovation at Manipal Insititute of Technology (MIT), Manipal

In a momentous event held at the Innovation Center of Manipal Institute of Technology (MIT), the student project ‘KX 23’ – Go Kart, crafted by the ingenious minds of ‘Team Carting Manipal’, was unveiled today. The project, affectionately dubbed ‘light year’ by the students, represents a remarkable blend of dedication, innovation, and technical prowess.

The unveiling ceremony was graced by the presence of Gen (Dr) M D Venkatesh, vice chancellor of Manipal Academy of Higher Education (MAHE), who expressed immense pride in unveiling this exceptional student project. He stated, “This Go Kart will exude excellence on every track it conquers and is destined for numerous accolades. At MAHE and MIT, student projects hold the utmost priority. The commitment to provide a track facility for such projects reflects the institution’s dedication to nurturing student-led innovations.” He applauded the students’ dedication, sincerity, and technical proficiency, urging them to carry forward the legacy of their predecessors and strive for continuous improvement.

Commander (Dr) Anil Rana, director of Manipal Institute of Technology, Manipal, also congratulated the team and highlighted the determination and hard work that students invest in completing innovative projects. He emphasized that success is inevitable when goals are set, and hard work is relentless. Student projects, such as ‘KX 23’, are a testament to teamwork, commitment, leadership skills, effective task management, and the ability to meet deadlines, and MIT consistently excels in achieving these goals.

The journey of ‘KX 23’ – Go Kart began on September 22, 2022, under the leadership of a dedicated team comprising 25 students. This innovative endeavour, with a cost ranging from 7 to 10 lakhs, was spearheaded by Shaun and team manager Mayank.The ‘KX 23’ – Go Kart project represents the epitome of student-led innovation and the unwavering commitment of MIT and MAHE to foster excellence in education. It is expected that this extraordinary creation will leave a lasting mark on the racing circuit, earning accolades and recognition for both the university and the talented students behind it.

source/content: daijiworld.com (headline edited)

NATIONAL & KARNATAKA: CONSTRUCTION TECHOLOGY BREAK-THROUGH: Indian Institute of Science(IISc) cracks Code to Build Low-Carbon Construction

The multilateral project is funded jointly by the Department of Science and Technology (DST) under the trans-national platform of Accelerating Carbon Capture, Utilisation and Storage Technologies.

Researchers at the Indian Institute of Science (IISc) have pioneered breakthrough materials and processes that could bring down the building industry’s carbon emissions and supplement sustainable construction practices.

The Centre for Sustainable Technologies in IISc has utilised 3D-printable material formulations with industrial by-products, including construction and demolition wastes (CDW), blast furnace slag, and fly ash, for carbon sequestration.

Carbon sequestration is the process where atmospheric carbon dioxide is captured and stored. The method aims at reducing the amount of carbon dioxide in the atmosphere.

The multilateral project is funded jointly by the Department of Science and Technology (DST) under the trans-national platform of Accelerating Carbon Capture, Utilisation and Storage Technologies.

The 3D printable material formulations have the potential to be used in fabricating walls, slabs, and various other building components, a DST statement said.

“The developed material, utilising an optimised process of accelerated carbonation curing, can store 35-40 per cent of carbon dioxide by mass of cement,” DST said. Small crystals of carbonate minerals formed during the sequestration can also enhance the engineering performance of the material.

The innovation could replace up to 75 per cent of natural sand in cement-based construction materials. The research has been published in the journal — Construction and Building Materials.

source/content: deccanherald.com (headline edited)

INTERNATIONAL / NATIONAL & KARNATAKA: GLOBAL HEALTH & PHARMAEUTICALS: Biocon Chief Kiran Mazumdar-Shaw Appointed Member of Court of Regents at Royal College of Surgeons of Edinburgh

Biocon Ltd and Biocon Biologics Ltd Executive Chairperson Kiran Mazumdar-Shaw has been appointed as Regent of the Royal College of Surgeons of Edinburgh (RCSed), a Biocon release said on Thursday.

On her appointment as the latest member to the College’s Court of Regents, Mazumdar-Shaw said: “I am humbled and deeply honoured to be appointed Regent of the Royal College of Surgeons Edinburgh. As the oldest surgical college in the world with just under 30,000 members in 100 countries, the RCSed has been championing the highest standards of surgical and dental practice by providing high quality medical education. I look forward to contributing to the College’s mission and advancing the frontiers of surgical excellence.”

The Court of Regents comprises a group of distinguished and accomplished individuals in their field who provide the college with advice and expertise.

The Royal College of Surgeons of Edinburgh is a prestigious Scottish medical association which was founded in 1505 by Royal Charter granted from King James IV. It is the oldest surgical colleges in the world with nearly 30,000 members in 100 countries, and about half of them are from overseas, touching every stage of the career path from medical students to consultants.

source/content: daijiworld.com (headline edited)

KARNATAKA: FIRST : Bengaluru’s First Underground Electric Transformer inaugurated at Malleshwaram

The idea behind the underground electric transformer is to ensure the safety of people and to maintain the aesthetics of India’s garden city.

Bengaluru’s first underground electric transformer was inaugurated at Malleshwaram on Tuesday by the city’s civic body and electricity board together. The idea behind the underground electric transformer is to ensure the safety of people and to maintain the aesthetics of India’s garden city.

Karnataka energy minister KJ George said that the government is planning to install more such underground electric transformers in the city, which are usually seen on the footpath or on the side of a road. He said, “#Bescom will eventually convert all the HT overhead lines to underground cables in Bengaluru city. This will also convert the complete system which includes distribution transformers, ring main units, feeder pillar boxes, etc into an underground system.”

The minister also said that this will help the BBMP and BESCOM to provide better service, as they do not need to dig the road or block the traffic during any maintenance works. “This adds to the overall safety of the environment, encouraging the citizens to use footpaths without any hassles since they’d be free from interruption during maintenance works of overhead cables and related equipment. This would also keep the electrical equipment insulated from drastic climatic changes such as cold, heat and rains,” the minister added.

The minister also reiterated that there is a need to avoid the visual clutter in Bengaluru, which is visited by the people from all over the globe. He also said, “More than anything else, smart underground distribution infrastructure is not only innovative, it also removes a significant amount of visual clutter and improves the looks of the urban area.”

source/content: hindustantimes.com (headline edited)

INTERNATIONAL, NATIONAL & KARNATAKA : SILK INDUSTRY: Sericulture And Silk Industry International Training Session Begins, Mysuru

Over 30 foreign delegates attend month-long programme at Central Sericultural Research and Training Institute in Mysuru city.

A month-long international training programme on ‘Sericulture and Silk Industry’ began at the Central Sericultural Research and Training Institute (CSRTI) in the city this morning.

More than 30 delegates from countries including Cameroon, Ethiopia, Ghana, Iran, Kenya, Myanmar, Nigeria, Philippines, Uganda, Vietnam, Zimbabwe, Laos, Thailand and Bangladesh are participating.

This training programme is conducted under the Indian Technical and Economic Cooperation (ITEC), sponsored by the Ministry of External Affairs, Government of India. The trainees will undergo 30 days of practical training in mulberry silkworm rearing, complemented by classroom teaching and exposure visits to all sectors of sericulture.

The event was inaugurated at CSRTI premises on Manandavadi Road here by Dr. C. Meenakshi, Director (Finance) and Member-Secretary of the Central Silk Board, in the presence of Dr. Gandhi Doss, Director of CSRTI and R. Dileep Kumar, Executive Director of the International Sericulture Commission.

Dr. Meenakshi emphasised the importance of sericulture technologies and training for the development of the silk industry. She highlighted India’s unique position in the world’s premium silk production and the role of the International Sericulture Commission in conducting the international training.

Dr. Meenakshi stated that the trainees would receive hands-on training in mulberry silkworm rearing for four weeks and be exposed to the latest technologies developed by CSRTI. They will also visit progressive sericulture farmers and allied sectors of sericulture in and around Mysuru, with the goal of increasing silk production worldwide.

She informed the delegates that CSRTI Mysuru, as a pioneering Sericultural Research Institute under the Central Silk Board, is dedicated to research and development of technologies to enhance silk productivity and quality in India.

The institute also conducts training programmes on various aspects of sericulture for national and international participants. She encouraged the trainees to share the knowledge gained from quality silk cultivation in their respective nations.

According to CSRTI, the main objectives of this training programme are to support the introduction and development of sericulture activities in third-world countries, generate skilled manpower in sericulture, provide training in extension management and technology transfer, and impart knowledge in post-cocoon technology and successful commercial sericulture practices for replication in other developed countries.

source/content: starofmysore.com (headline edited)

KARNATATA: SPACE & TECHNOLOGY: Bengaluru-based Space Startup ‘GalaxEye Space’ Unveils First Drone-based SAR System

Started in 2021, GalaxEye is the brainchild of entrepreneurs Singh, Denil Chawda, Kishan Thakkar, Pranit Mehta and Rakshit Bhatt.

A Bengaluru-based space-tech startup and the first Indian Earth observation satellite company, GalaxEye Space, inaugurated a high-resolution aerial drone based Synthetic Aperture Radar (SAR) system that can perform exceptionally detailed and high resolution all-weather imaging, even amid rainy or cloudy conditions. 

“The in-house developed data fusion technology will deliver unprecedented insights and data from space, empowering satellite constellations to conduct all-weather imaging without succumbing to atmospheric hindrances that plague current single-sensor satellites,” said co-founder & CEO, GalaxEye Space, Suyash Singh. He added that technology opens doors for generating highly detailed images through a compact satellite constellation.

“Upon achieving full operational capacity, this constellation will achieve global coverage within a 12-hour time frame. The capability of constant all-weather, all-time imaging, combined with precise object geometry analysis, holds immense value across diverse sectors such as insurance, precision agriculture, accurate property tax assessment, and the monitoring of utilities like transmission lines, to name a few,” said Singh.

“India is budding with young space startups. Among them, GalaxEye has been able to prove its capabilities in a short period, that too with difficult technologies like SAR,” stated Dr Sudheer Kumar, director, Capacity Building Office, ISRO. “We are keen to see young space talent shaping the future of the Indian space economy,” he added.

“Space technology is currently a very active area having several young entrepreneurs. GalaxEye Space, spun out of IIT Madras, has grown by leaps and bounds since they were incorporated. We are proud of their achievements and look forward to more such ‘Make In India’ initiatives. We shall continue to nurture and support budding entrepreneurs in several ways,” said Dr V Kamakoti, director, Indian Institute of Technology (IIT) Madras.

Started in 2021, GalaxEye is the brainchild of entrepreneurs Singh, Denil Chawda, Kishan Thakkar, Pranit Mehta and Rakshit Bhatt. The startup, spun out of IIT Madras, has inked strategic partnerships and commercial contracts with leading organizations, including US-based space software provider Antaris Inc, XDLINX Labs, Ananth Technologies, and Dassault Systemes. The company is committed to further expanding its partnerships and customer base in the upcoming months, and has submitted a proposal to IN-SPACe seeking support from ISRO to take its endeavours forward.

source/content: newindianexpress.com (headline edited)

NATIONAL & KARNATAKA: SPACE TECHNOLOGY: Udupi Ramachandra Rao (U.R. Rao) – The Man who Built a Satellite in a Shed

Let us shift our attention away from the lander to Chandrayaan-3, the satellite that carried it there, and to the story of India’s satellite dream, which began in 1972 in six rough industrial sheds outside Bengaluru.

Last week, as the Vikram lander descended into a graceful, precise, soft landing on the dark side of the moon, Indian hearts exploded in pride. This week, let us shift our attention away from the lander to Chandrayaan-3, the satellite that carried it there, and to the story of India’s satellite dream, which began in 1972 in six rough industrial sheds outside Bengaluru.

The problem with space technology is that countries guard their knowhow fiercely – there’s very little, and very sketchy, information available in the public domain. In 1966, therefore, Vikram Sarabhai, then director of the Indian National Committee for Space Research (INCOSPAR) invited one of his former PhD students at Physical Research Laboratories (PRL) Ahmedabad, who had been researching solar cosmic-ray phenomena while working with Pioneer space probes and Explorer satellites at MIT, to return and head the satellite engineering team he was putting together. The brilliant young man who bought into the dream and would later be hailed as India’s Satellite Man was 34-year-old Udupi Ramachandra Rao.

When UR Rao took over the satellite program, he was the only one on the team to have ever seen a satellite. At that time, the satellite engineering team was divided between the Thumba Equatorial Rocket Launching Station (TERLS) near Trivandrum, and PRL in Ahmedabad. The untimely death of Sarabhai in 1971 brought Satish Dhawan to the helm of ISRO (INCOSPAR became ISRO in 1969). Unwilling to give up his job as Director of the Indian Institute of Science (IISc), Dhawan negotiated for ISRO to move to Bengaluru, providing the perfect opportunity for Rao, who had spent his boyhood in Ballari and the little village of Adamaru in Udupi, to decide to move the satellite centre here as well.

It wasn’t easy. The unionized labour force at TERLS went on the warpath, refusing to allow any equipment to be moved out. In Bengaluru itself, premises had to be found. At first, the IISc gymkhana was co-opted; later, the Karnataka government offered Rao a few sheds at the brand-new (read: entirely lacking facilities) Peenya Industrial Area outside town. In a dazzling feat of jugaad, involving thermocol, vinyl, and, presumably, duct tape, one of those dusty, asbestos-roofed sheds was converted into the ‘clean room’ required for satellite activity.

In those sheds, between 1972 and 1975, a young and inexperienced but passionate team of scientists and engineers – average age: 26 – put together, under Rao’s dynamic, inspiring. impatient leadership, India’s very first satellite, Aryabhata. It was a magnificent feat – no other country had built a satellite in under three years. The famous picture of Aryabhata being transported on a bullock cart was scoffed at in the American press, which questioned a poor country’s need for a space program. Rao explained it years later as another brilliant example of jugaad. The spacecraft had to be tested for electromagnetic capability and interference in an open area, but metal trucks threw off reflections that interfered with the satellite’s antenna. Someone came up with the brilliant idea of using a wooden bullock cart to transport it instead – et voila!

In 2017, at the age of 85, after overseeing the design of 18 more satellites, accelerating the development of satellite launch vehicles like the ASLVs and PSLVs during his decade-long tenure as Chairman of ISRO, and becoming the first Indian to be inducted into the International Astronautical Federation’s ‘Hall of Fame’, the much-decorated UR Rao died with his boots on. Since then, the ISRO Satellite Centre in Bengaluru, which he so capably raised on the wings of a dream and a prayer, and where all the Chandrayaan satellites were built, has carried his name, and now goes by UR Rao Satellite Centre.

source/content: hindustantimes.com (headline edited)

NATIONAL & KARNATAKA: SCEINC & TECHNOLOGY: Indian Institute of Science (IISc) Develops Autopilot System for Drones

The reason for India’s slow progress in this sector is due to the non-availability of essential indigenous electronics components like microcontrollers and sensors at a reasonable cost.

With the exponential rise in drone usage across sectors like industrial applications, agriculture, logistics and defence, the need for indigenous avionics systems has become crucial. In order to reduce dependence on foreign drone technology, the Indian Institute of Science (IISC) has made a significant achievement in the field of unmanned aerial systems. 

The Artificial Intelligence and Robotics Laboratory (AIRL) at IISC announced that the team has successfully developed an indigenous industrial-grade autopilot system for drones. The team said this achievement is the initial step towards the indigenization of avionics systems for drones in India. This feat was possible through the utilization of Indian-made Vega Microcontrollers, developed by the Centre for Development of Advanced Computing (CDAC), as part of the Digital India RISC-V Program (DIR-V). 

The indigenously developed technology will help reduce the reliance on microcontrollers in future drone avionics projects. Professor Suresh Sundaram, Associate Professor at the Department of Aerospace Engineering, who headed the project said, “Our autopilot system, powered by Vega Microcontrollers, showcases the immense potential of homegrown solutions in the unmanned aerial systems domain. We are confident that this breakthrough will pave the way for further advancements in this field and contribute to the growth of the drone ecosystem in India.” 

India’s most used drone technologies which include an unmanned aerial system (UAV) that can help run a basic operation system and forward data to a navigation control unit, are imported from China, US, Israel, and several European countries.

The reason for India’s slow progress in this sector is due to the non-availability of essential indigenous electronics components like microcontrollers and sensors at a reasonable cost. The country also lacks a skilled workforce working on the UAV systems. Using imported tech comes with major security concerns such as hacking and data manipulation.

The country has been on a steady growth towards chip manufacturing and CDAC is a ray of hope in developing world-class microcontrollers. “This move will cut millions of dollars worth of electronics import over the years and make India self-reliant in terms of UAV technology,” said the laboratory. 

source/content: newindianexpress.com (headline edited)

NATIONAL & KARNATAKA: Scientists from Gadag and Shivamogga part of Chandrayaan-3 Mission

Shivamogga:

Ramu said to TNIE that it was a moment to cherish for a lifetime and was proud to be part of the Chandrayaan-3, a successful mission to the moon.

When the entire country sang praises and rejoiced over the success of Chandrayaan-3, Shivamogga city puffed up with extra pride as it is home to C Ramu, the Deputy Project Director (DPD) of the Propulsion System, Propulsion Module. Ramu said to TNIE that it was a moment to cherish for a lifetime and was proud to be part of the Chandrayaan-3, a successful mission to the moon.

Ramu did his primary education at RC school in the city. He did his Mechanical Engineering course at Jawaharlal Nehru National College of Engineering. Later, he did his MS in Aerospace Engineering from IISc, Bengaluru.  He joined ISRO in the year 2004 and is presently working as a scientist/ engineer in the Liquid Propulsion System Centre, Bengaluru.   

Gadag: The mission also has a Gadag connection. One of the lunar mission’s scientists is a native of Gadag. Sudhindra Bindagi, who joined ISRO in 1986, retired only last month. He is said to be one the main engineers behind the success of Chandrayaan -3. An alumnus of VDS Boys High School in Gadag, the scientist had a video conference session with the students of his alma mater on Thursday. Bindagi completed his primary education in Kannada medium in Gadag. His photographs with Prime Minister Narendra Modi have gone viral on social media platforms. Bindagi, a resident of Veeranarayana Temple area in Gadag, completed his B.Tech from Surathkal Engineering College. He worked as a satellite thermal designer in 1992 and as a project manager for communication satellite INSAT-LE.  

source/content: newindianexpress.com (headline edited)